
Abstract
This project aims to design, implement, and verify a ternary
content-addressable memory (TCAM) with optimized speed and
density. The system supports masked writes, ternary searches with
“don’t care” bits, and outputs the highest-index matching row.
Functionality was verified through schematic-level simulation of
individual cells, rows, and the integrated system.

Theory of Operation and Specifications

The table above shows the truth table of matchline for a single TCAM
cell. The matchline for a row outputs a high level only when all 32
TCAM cells in the row successfully match the input.

Specifications
● Search Delay: tPD~tpre+N⋅tcell+tencoder
● Search Power: Ptot~𝛼⋅Vdd

2⋅fclk⋅(N⋅Cml+N⋅Csl+Cencoder)
● Area: Atot~N⋅N⋅Acell+Aencoder

Simulation Results

To test the full array, Verilog-A is used to generate all the input data and
control signals. We write data into all 32 rows of the TCAM, input the
search data, and check the PE output Match_Addr[4:0]. Figure.8 shows
the full waveform. After the write operations, preML<31:0> are asserted
low to precharge the matchlines, and the search signals pull down
mismatched lines. In this case we are writing 32’0F0F0F0F to the first 30
rows and 32’0F0F0F0E to the last two, and searching for 32’0F0F0F0F.
The output is at address 29 (11101), which is correct. Our worst-delay
from the search line to the matchlines is ~47ps, and ~200ps through
priority encoder.

Key Schematics

Ternary Content-Addressable Memory (TCAM) Array with a Priority Encoder
Ivan Huang(qh229), Jiaying Zhang(jz2354), Kevin Wang(kw633), Qingmiao Xiao(qx99), Xiaoyu Liang(xl434)

Discussion
The Verilog-A testbench was tricky to setup: we could not find a way to
generate signals with loops. We utilized Python (!) scripts to generate the
~5000 lines of Verilog-A code needed to write full 32-bit values to the 32
entries.. On the schematic side, we had to experiment sizings for the ML
and SL transistors. The size of our array meant that these transistors
have to be strong in order to pull to the correct value. For example,
inefficient size in the pull-down NMOS will result in the matchline
staying high when only one bit misses.

Top Level

Write operation: When write_en is asserted, write_addr[4:0]
selects one of the 32 rows, and data is written using the
BL1[31:0] and BL2[31:0].
Search operation: The circuit compares SL1[31:0] and SL2[31:0]
(search inputs) with stored data. Matchlines are pre charged to
high, and pulled low on mismatch.
Priority Encoder: The resulting 32-bit matchlines[31:0] feed
directly into the Priority Encoder, which outputs
match_addr[4:0] for the highest-indexed '1'

Figure.1 32x32 TCAM Array Diagram

Introduction & Motivation
Modern data processing and networking systems demand rapid
associative lookups – eg. IP routing and access control filtering, where
the address of the desired data is not known in advance. In
conventional RAMs, data are fetched by supplying an address.
Hence, performing an associative search requires iterating through all
the addresses, making it unsuitable for such tasks.
Content-Addressable Memories (CAMs) inverts this access model:
the search data is compared to all stored words simultaneously, and
any rows that match assert a hit line in the same clock cycle.
Ternary CAMs (TCAMs) further extend this capability by allowing
“don’t care” bits. Our project implements a 32x32 TCAM array with
an integrated priority encoder, with a focus on achieving high speed
and compact layout.

References
● S. Kumar, A. Noor, B. K. Kaushik and B. Kumar, "Design of Ternary Content Addressable

Memory (TCAM) with 180 nm," 2011 International Conference on Devices and
Communications (ICDeCom), Mesra, India, 2011, pp. 1-5, doi:
10.1109/ICDECOM.2011.5738528.

● K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM) circuits and
architectures: a tutorial and survey," in IEEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712-727, March 2006, doi: 10.1109/JSSC.2005.864128.

Post-layout verification plan
We will complete layout for the TCAM cell, row, and array.
Post-extraction, we expect worse much worse performance compared to
the schematic, as our array is quite big. Monte-Carlo simulation is
appropriate similar to Lab4.

Figure.2 TCAM Cell

Figure.6 TCAM Row w/ Matchline Precharge

Figure.5 Write Cell

Figure.4 Bitline Precharge

0 0 0 0
0 1 0 1
1 0 1 0
0 1 0 1

0
1
2
3

RAM
1

A
dd

re
ss

 In

0 1 0 1Data Out

TCAM
0 X 0 0
0 X 0 1
1 0 1 0
0 1 0 1

0
1
2
3

1

A
dd

re
ss

 O
ut

0 1 0 1Search In

3

Figure.3 32-to-5 Highest-Index Priority Encoder

Figure.7 Full TCAM array + PE with test
signal generator implemented in Verilog-A

…

…

…

m
at

ch
lin

es
 <

31
:0

>

Pr
io

ri
ty

 E
nc

od
er

…
…

…
…

…
…

…
…

TCAM Array
32x32 m

at
ch

_a
dd

r <
4:

0>

BL1 <31:0>
BL2 <31:0>
word_line <31:0>
write_en

SL1 <31:0> SL2 <31:0> search_en

Figure.8 Array+PE Simulation Waveform

Figure.9 Searchline to matchline worst delay

Table.1 Truth Table of Match Line

Comparison Part

Storage Parts

Each TCAM cell stores one
bit in ternary form—0, 1, or X
(don’t care).
The storage blocks are two
SRAM-like subcells, each
made of cross-coupled
inverters and pass transistors.
The comparison logic includes two NMOS transistors in series. The
stored values (Q1, Q2) are compared with search lines SL1 and SL2.

WL

BL1 BL2

SL1 SL2
ML

BL1 BL2

Q1 Q2

Tsl->ml(ps) 47.154 Tsl->pe(ps) 200.076 Power(pj) 55.478
VS

ena

ena

ena

ena

A<31:24>

A<23:16>

A<15:8>

A<7:0>

EI
A<7:0>

CS
F2
F1
F0

EO

EI
A<7:0>

CS
F2
F1
F0

EO

EI
A<7:0>

CS
F2
F1
F0

EO

EI
A<7:0>

CS
F2
F1
F0

EO

ena

ena

OUT<4>

OUT<3>

OUT<0>

OUT<1>

OUT<2>

Table.2 Performance of TCAM

SL1 SL2

BL1
!BL1 !BL2

BL2

WL

ML

ML

Figure.10 Layout of TCAM cell and array (from left to right)

