
Abstract
This project aims to design, implement, and verify a ternary 
content-addressable memory (TCAM) with optimized speed and 
density. The system supports masked writes, ternary searches with 
“don’t care” bits, and outputs the highest-index matching row. 
Functionality was verified through schematic-level simulation of 
individual cells, rows, and the integrated system.

Theory of Operation and Specifications

The table above shows the truth table of matchline for a single TCAM 
cell. The matchline for a row outputs a high level only when all 32 
TCAM cells in the row successfully match the input.

Specifications
● Search Delay: tPD~tpre+N⋅tcell+tencoder
● Search Power: Ptot~𝛼⋅Vdd

2⋅fclk⋅(N⋅Cml+N⋅Csl+Cencoder)
● Area: Atot~N⋅N⋅Acell+Aencoder

Simulation Results

To test the full array, Verilog-A is used to generate all the input data and 
control signals. We write data into all 32 rows of the TCAM, input the 
search data, and check the PE output Match_Addr[4:0]. Figure.8 shows 
the full waveform. After the write operations, preML<31:0> are asserted 
low to precharge the matchlines, and the search signals pull down 
mismatched lines.  In this case we are writing 32’0F0F0F0F to the first 30 
rows and 32’0F0F0F0E to the last two, and searching for 32’0F0F0F0F. 
The output is at address 29 (11101), which is correct. Our worst-delay 
from the search line to the matchlines is ~47ps, and ~200ps through 
priority encoder.  
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Discussion
The Verilog-A testbench was tricky to setup: we could not find a way to 
generate signals with loops. We utilized Python (!) scripts to generate the 
~5000 lines of Verilog-A code needed to write full 32-bit values to the 32 
entries.. On the schematic side, we had to experiment sizings for the ML 
and SL transistors. The size of our array meant that these transistors 
have to be strong in order to pull to the correct value. For example, 
inefficient size in the pull-down NMOS will result in the matchline 
staying high when only one bit misses.  

Top Level

Write operation: When write_en is asserted, write_addr[4:0] 
selects one of the 32 rows, and data is written using the 
BL1[31:0] and BL2[31:0]. 
Search operation: The circuit compares SL1[31:0] and SL2[31:0] 
(search inputs) with stored data. Matchlines are pre charged to 
high, and pulled low on mismatch. 
Priority Encoder: The resulting 32-bit matchlines[31:0] feed 
directly into the Priority Encoder, which outputs 
match_addr[4:0] for the highest-indexed '1'

Figure.1 32x32 TCAM Array Diagram

Introduction & Motivation
Modern data processing and networking systems demand rapid 
associative lookups – eg. IP routing and access control filtering, where 
the address of the desired data is not known in advance. In 
conventional RAMs, data are fetched by supplying an address. 
Hence, performing an associative search requires iterating through all 
the addresses, making it unsuitable for such tasks. 
Content-Addressable Memories (CAMs) inverts this access model: 
the search data is compared to all stored words simultaneously, and 
any rows that match assert a hit line in the same clock cycle.  
Ternary CAMs (TCAMs) further extend this capability by allowing 
“don’t care” bits. Our project implements a 32x32 TCAM array with 
an integrated priority encoder, with a focus on achieving high speed 
and compact layout. 
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Post-layout verification plan
We will complete layout for the TCAM cell, row, and array. 
Post-extraction, we expect worse much worse performance compared to 
the schematic, as our array is quite big. Monte-Carlo simulation is 
appropriate similar to  Lab4. 

Figure.2 TCAM Cell

Figure.6 TCAM Row w/ Matchline Precharge 

Figure.5 Write Cell

Figure.4 Bitline Precharge
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Figure.3 32-to-5 Highest-Index Priority Encoder

Figure.7 Full TCAM array + PE with test 
signal generator implemented in Verilog-A
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Figure.8 Array+PE Simulation Waveform

Figure.9 Searchline to matchline worst delay

Table.1 Truth Table of Match Line

Comparison Part

Storage Parts

Each TCAM cell stores one 
bit in ternary form—0, 1, or X 
(don’t care). 
The storage blocks are two 
SRAM-like subcells, each 
made of cross-coupled 
inverters and pass transistors.
The comparison logic includes two NMOS transistors in series. The 
stored values (Q1, Q2) are compared with search lines SL1 and SL2.
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Table.2 Performance of TCAM 
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Figure.10 Layout of TCAM cell and array (from left to right)


