OpenRoboCare: A Multimodal Multi-Task Expert Demonstration Dataset
for Robot Caregiving
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Fig. 1: Overview of OpenRoboCare dataset for robot caregiving, featuring 21 occupational therapists demonstrating 15 common caregiving
tasks, captured across 5 data modalities. It consists of 315 sessions, totaling 19.8 hours, with a collection of 31,185 samples.

Abstract— We present OpenRoboCare, a multimodal dataset
for robot caregiving, capturing expert occupational therapist
demonstrations of Activities of Daily Living (ADLs). Caregiv-
ing tasks involve complex physical human-robot interactions,
requiring precise perception under occlusions, safe physical
contact, and long-horizon planning. While recent advances
in robot learning from demonstrations have shown promise,
there is a lack of a large-scale, diverse, and expert-driven
dataset that captures real-world caregiving routines. To address
this gap, we collect data from 21 occupational therapists
performing 15 ADL tasks on two manikins. The dataset
spans five modalities—RGB-D video, pose tracking, eye-gaze
tracking, task and action annotations, and tactile sensing,
providing rich multimodal insights into caregiver movement,
attention, force application, and task execution strategies. We
further analyze expert caregiving principles and strategies,
offering insights to improve robot efficiency and task feasibility.
Additionally, our evaluations demonstrate that OpenRoboCare
presents challenges for state-of-the-art robot perception and
human activity recognition methods, both critical for developing
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safe and adaptive assistive robots, highlighting the value of
our contribution. See our website for additional visualizations:
https://emprise.cs.cornell.edu/robo-care/.

I. INTRODUCTION

According to the World Health Organization [7], approxi-
mately 1.3 billion people live with significant physical limi-
tations, many of whom require assistance with Activities of
Daily Living (ADLs) [8]. However, the demand for qualified
caregivers and therapists far exceeds the number of available
trained professionals [9]. Assistive robotics has potential to
support the caregiving process and address these issues to
some extent. Recent work in robot caregiving in feeding [10-
13], dressing [14, 15], bathing [16, 17], and transferring [18]
among other ADLs presents tremendous promise.

Despite these advancements, robot caregiving still faces
significant technical challenges. For example, consider the
requirements for assisted bed bathing [16, 17]: accurate per-
ception of human state, often under occlusions; bimanual and
mobile manipulation of human limbs with critical safety con-
straints; long-horizon planning under uncertainty; personal-
ization to users’ physical function [19] and preferences [20];
and adaptation in response to human feedback.

To address these challenges, recent work has considered
learning-based approaches for specific caregiving tasks [21—



TABLE I: Comparison of OpenRoboCare with existing datasets.

Context Statistics Data Modality

1 2 3 4 #Tasks 5 . Pose . 7
Dataset Care.” Pop. Demo.”  #Subj.”  (apry) rs  Samples®> IMU Video CG|CR Gaze  Tactile Act.
Bagewadi et al. [1] X TD User 33 1(0) 2.94 485 RGB M (-|v) X Partial AT
SBU Kinect [2] X TD User 7 8(0) - - X RGB-D V () X X T
TacAct [3] X TD - 50 12(0) - - X X X X Partial A
SONAR [4] E Expert 14 23(5)  37.3* 36006 X M (/|X) X X T
Kaczmarek et al. [5] ML Expert 7 9(1) 0.7 132 RGB X|X X X T
HARMONIC [6] TD User 24 1(1) 5 600 RGB V (|v) X T
OpenRoboCare (ours) SML Expert 21 15(5) 19.8 31185 X RGB-D M)V (/|V) Full AT

! Caregiving. Target population. (TD: typical developing. E: elderly. ML: mobility limitation. SML: severe mobility limitation.) *Demonstration type. *Number of subjects.
3Total number of samples (modalities x tasks x subjects x time in hours) ®Pose data. (M: motion capture, includes both optical and inertial. V: pose calculated from videos.
CG: caregiver pose. CR: care recipient or user pose.) ’Action annotation. (T: task-level. A: action-level.) *Re-calculated after removing non-documented activities.

23]. These prior works collected their own datasets, typically
in simulation, that are tailored to the task of interest. This
task-specific data collection is in contrast to recent advances
in general robot learning where large diverse datasets are
used to train foundation models [24,25]. Existing caregiving
datasets are also limited in data modalities, often featuring
vision [23] or haptics [5] but not both. Furthermore, with a
few notable exceptions [4, 5], existing caregiving datasets do
not feature data collected from expert human caregivers or
occupational therapists. These datasets are therefore lacking
the extensive practical knowledge accumulated by experts
through years of experience and training.

To bridge this gap, we present OpenRoboCare (Fig. 1),
the first multi-task, multimodal, and expert-collected dataset
for robot caregiving. OpenRoboCare features expert demon-
strations from 21 occupational therapists (OTs) in 15 distinct
ADLs with data captured from five modalities: RGB-D
video, tactile sensing, pose tracking, eye-gaze tracking, and
action annotations. We provide tactile sensing with a custom
whole-body piezo-resistive skin, pose tracking with motion
capture, eye-tracking with Pupil Labs glasses, and action
labeling via natural language during data collection. The OTs
demonstrated their assistance on two manikins with different
genders and body weights. Our data collection protocol
was designed in collaboration with an expert occupational
therapist and co-author, ensuring that the task procedures
and setup closely resemble real-world caregiving scenarios.

In addition to releasing OpenRoboCare as an open-source
dataset, we conduct a comprehensive quantitative analysis
to inform task execution and physical interactions with care
recipients in robot caregiving. In collaboration with an expert
OT, we distill guiding principles in OT practice and identify
specific techniques that exemplify these principles across
tasks. We present OpenRoboCare as a benchmark for robot
perception and human activity recognition in caregiving
scenarios. While state-of-the-art methods perform poorly out
of the box, fine-tuning on a small subset of OpenRoboCare
leads to significant performance gains. Overall, our findings
highlight the richness and complexity of expert caregiving
strategies, positioning OpenRoboCare as a critical resource
for advancing multimodal learning in robot caregiving.

II. RELATED WORK

Caregiving Datasets Previous works in rehabilitation and
public health collected survey and interview-based data on

caregiving, e.g., for older adults [26-28] and those with
spinal cord injuries [29]. These efforts focus on the health,
social, and financial aspects of caregiving, rather than the
physical caregiving process. Works close to ours either
did not collect data from expert caregivers [6], or lacked
multimodality [4,5]. OpenRoboCare is the first dataset for
multi-task, multimodal, expert caregiving (Table I).

Physical HHI & HRI Datasets Our work is also related to
previous efforts in human-human and human-robot interac-
tion that collected multimodal and multi-task data, e.g., for
activity recognition [30,31]. For example, Bagewadi et al.
[1] collected data of human-robot hugging interactions using
wearable sensors. The SBU Kinect Interaction [2] human-
human dataset similarly considered hugging among other
physical activities such as kicking and punching. TacAct [3]
collected high-fidelity tactile data of a human touching a
robot arm. We similarly collect high-fidelity tactile data, but
placed sensors on the human body rather than the robot arm.

Human Activities Datasets Our work is also more
broadly related to the literature on human activity recog-
nition [32]. Most related are datasets for activity recogni-
tion that are situated in homes and hospitals [33-36]. In
experiments, we evaluate a state-of-the-art method [37] for
activity recognition on OpenRoboCare and show that our
tasks present significant challenges and can drive further
progress in the field.

III. TASK SELECTION AND CAREGIVING PROTOCOL

Our goal is to collect a multimodal, multi-task, expert-
driven dataset that facilitates robot caregiving research. In
this section, we describe the included tasks and the protocol
for expert caregivers completing the tasks. This data collec-
tion protocol was approved by the Cornell IRB.

A. OT-in-the-loop Protocol Design

We selected tasks and designed our data collection in
close consultation with an expert OT collaborator who also
has extensive experience in OT education. Our setup fol-
lows standard clinical guidelines for training OTs [38,39].
In designing the setup, we especially consider individuals
with quadriplegia, a significant sensorimotor impairment that
results in a lack of control and movement of the upper limbs,
trunk, lower limbs, and pelvic organs and requires complete
assistance with basic ADLs [40].



B. Task Selection

We consider five of the six basic Activities of Daily Living
(ADLs): bathing, toileting, dressing, transferring, and groom-
ing. Feeding is excluded as it requires substantially different
caregiving skills and has been extensively studied [41,42].
Within the five basic ADLs, we consider 15 tasks (Fig. 2):
one each from bathing, toileting, and grooming; two from
transferring; and 10 from dressing capturing diverse garment
types and scenarios. We develop caregiving protocols that
mirror real-life routines of care recipients with quadriplegia.
We next describe the ADLs and tasks in detail, highlighting
key aspects relevant to robot caregiving.

Bathing Caregivers perform a full-body sponge bath on
a manikin lying on a hospital bed. They are instructed to
pat the skin gently, as they would with a care recipient to
minimize the risk of discomfort or injury. Key aspects of
interest include the amount of force applied, techniques for
cleaning hard-to-reach areas, and strategies for adjusting the
manikin’s position to access its back.

Toileting Caregivers assist a manikin with toileting using
a bedpan while it is lying on a hospital bed, a common
method for individuals with limited mobility or a high risk
of injury that prevents the use of a regular toilet. The task
requires caregivers to lift the manikin’s hips to position the
bedpan underneath and subsequently remove it for emptying.
Key aspects of interest include the techniques used to lift
and stabilize the manikin’s hips when handling manikins
of varying weights, as well as the hand placements and
stabilization strategies employed.

Dressing Caregivers dress or undress a manikin. Dressing
requires different strategy sequences and safety considera-
tions for different body segments (upper/lower body), gar-
ment types, supporting surfaces (bed/wheelchair), and body
position (lying down/sitting). To capture these variations,
caregivers dress and undress the manikin in t-shirts, vests,
and shorts while the manikin is lying on a bed or sitting
in a wheelchair. In total, we define 10 tasks (see Fig. 2).
Key aspects of interest include the ways caregivers prepare
clothing, coordinate bimanual movements, and handle care
recipients’ body parts.

Transferring Caregivers transfer a manikin between a bed
and a wheelchair using a Hoyer sling with a mechanical lift
(see Fig. 2). We consider bed-to-wheelchair and wheelchair-
to-bed transferring as two separate tasks. Key aspects of
interest include the ways in which caregivers use the Hoyer
sling, secure the sling properly, operate the lift, guide the
manikin’s position during transfer, and safely release the
manikin after the transfer.

Grooming Caregivers brush the manikin’s hair while it
is seated in a wheelchair. Key aspects of interest include
caregiver hand coordination, posture adjustments, and control
strategies during the grooming procedure.

C. Caregiver Protocol

Data collection spanned two weeks and involved 21 OTs.
Each participant performed 15 tasks on a male or female
manikin, one trial per task, taking approximately one hour
total. Before data collection, participants completed IRB
consent forms and demographic surveys. Upon arrival, they

received a detailed briefing covering the study objectives,
task instructions, equipment usage, and data collection pro-
cedures. Each caregiver was then fitted with motion capture
gloves, a motion capture hat, and eye-tracking glasses. We
calibrated the motion capture system and the eye-tracking
glasses with an OT before each data collection session.

IV. DATA COLLECTION SETUP

In this section, we describe the environment and data
recording setup. Data collection took place in an en-
closed space measuring 3.68m x 3.68m, designed to simulate
a realistic in-home caregiving setting. The hospital bed,
wheelchair, and Hoyer sling were reset to the same initial
position throughout the sessions. See Fig. 2 for an overview.
A. Hospital Manikins

In consultation with our OT expert, we select two hospital
manikins. One male (Rescue Randy, 150 Ibs, 6 ft 1 in)
and one female (Simple Susie, 37.26 lbs, 5 ft 5 in), both
with anthropomorphic dimensions and joints. Manikins are
frequently used in OT clinical training to simulate real-life
conditions [43]. They allow us to standardize caregiving
tasks and collect reliable, repeatable data without inconve-
niencing real patients. While manikins lack partial agency or
resistance, they effectively represent passive full-assistance
scenarios that are common in OT practice. The strategies
demonstrated by expert caregivers offer valuable insights for
adapting to interactions with partially active patients.

B. Assistive Devices

The data collection setup involves various assistive devices
to replicate realistic caregiving environments. The hospital
bed (Invacare ETUDE HC Hi-Lo) and electric wheelchair
(ROVI X3) are positioned next to each other in a fixed
arrangement. A Hoyer sling (Invacare 9805P) is also included
for transferring tasks. For specific caregiving tasks, assistive
devices are provided: a bathing sponge for bathing, a bedpan
for toileting, and a brush for grooming.

C. Sensing Modalities

RGB-D Videos We use three Intel RealSense D4351 RGB-
D cameras positioned around the scene to capture visual and
geometric data of the caregiver’s movements, interactions
with the manikin and assistive devices, and the resulting
manikin motion. Two cameras are placed at different angles
facing the hospital bed, while a third camera is positioned
behind the bed facing the wheelchair.

Tactile Skin We develop a custom tactile skin to fit
the manikins and record physical interactions between the
caregiver and the manikin. The sensor design is guided by
three key considerations: (1) customizability to accommodate
various manikin body shapes and sizes, (2) flexibility to en-
sure secure attachment to curved surfaces, and (3) durability
to withstand pressure exerted by the manikin’s weight.

Hardware Design: We design resistive tactile sensors using
specialized fabrics that are lightweight, flexible, and durable
(Fig. 3). Each sensor consists of a pressure-sensitive Velostat
layer, sandwiched between two copper conductive fabric lay-
ers and secured with non-conductive electrical tape. The sen-
sor’s resistance decreases as force is applied, enabling force
measurement. A voltage divider circuit converts resistance
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Fig. 2: Data collection setup and procedure. Left: setup of sensors and equipment. Center: assistive devices used by caregivers. Right:

sequence of tasks performed by each caregiver.
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Fig. 3: Tactile skin design and layout of sensors on manikin.

changes into analog voltage signals, which are processed by
an Arduino Uno. The sensor exhibits a nonlinear but stable
voltage response across the 0.05 to 3 N/cm? pressure range.
It has low hysteresis observed at forces below 5N and a
maximum hysteresis error of 7.09% at higher loads. See
website [44] for details.

Sensor Placement: A total of 88 resistive sensors are
developed, with 44 sensors placed on each manikin (Fig. 3).
The sensors are evenly distributed across the manikin’s body:
7 on each arm, 8 on each leg, and 14 across the front
and back of the torso, aiming to maximize coverage. Each
sensor covers an average area of 50 square inches, with gaps
between adjacent sensors kept under 1 mm.

Calibration and Processing: Prior to data collection, each
tactile sensor is calibrated using an ATI force/torque (F/T)
sensor to accurately map voltage readings to force values.
Before each task, the tactile skin is tared to eliminate any
baseline offset, ensuring consistent force measurements.

Pose Tracking We use a motion capture system equipped
with 12 OptiTrack PrimeX 13 cameras to track the move-
ments of both the manikin and the caregiver. The caregiver
wears a hat and gloves with motion capture markers to
accurately track hand and head movements. For manikin pose
tracking, we employ rigid body marker sets to define each
body segment.

Occlusions pose a fundamental challenge in real-world
caregiving and are critical for robotic systems to overcome.
In our dataset, occlusions caused by clothing in dressing
tasks and slings in transferring tasks often led to tracking

failures for both the manikin’s pose and the caregiver’s
hand positions. To address this, we manually labeled body
keypoints for a subset of the dataset using RGB images
from three calibrated cameras, originally used for RGB-D
video capture (details in Section IV-C). These annotations
were then used to train a YOLOvI11 [45] pose detector,
which automatically labeled the remaining data with little
human supervision. We estimated 3D positions by averaging
triangulated results from all camera pairs. While limited to
three views, this approach provides a practical and scalable
solution for occlusion handling.

Eye Tracking To analyze caregiver visual attention during
tasks, we equip participants with Pupil Labs eye-tracking
glasses to capture first-person video and 2D gaze data. We
use 3D pose tracking of the caregiver’s head as a proxy for
the eye-tracking glasses’ pose. During post-processing, we
apply a low-pass filter to smooth the gaze data. We correct
minor shifts in the glasses by re-aligning the gaze vector.

Task and Action Labeling ADL tasks like Hoyer sling
transfers are long-horizon activities with multiple steps.
Understanding caregiver actions at each stage enables seg-
mentation into modular components. To support this, we
record video and audio using a GoPro, with caregivers
verbally describing their actions as they interact with the
manikin. OTs then annotate the recordings, segmenting tasks
into meaningful sub-tasks based on their expertise, providing
insights into task decomposition and procedural flow.

D. Sensor Synchronization

Due to hardware limitations, each sensor operates at a
different sampling rate: RGB-D cameras at 15 Hz, tactile skin
at 60 Hz, motion capture at 150 Hz, and the eye tracker at
120 Hz. To achieve temporal synchronization, all computers
are synchronized with the NIST Internet Time Servers using
the chrony service on Ubuntu and w32tm on Windows.
For data alignment, we use the RGB-D stream (15 Hz) as
the reference timeline, and extract the closest timestamped
samples from the other modalities for each RGB frame to
produce synchronized frames at 15 Hz.
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V. DATASET CHARACTERISTICS AND ANALYSIS

OpenRoboCare contains 315 sessions of caregiver ex-
pert demonstrations, totaling 19.8 hours of multimodal data
across 5 modalities, collected by 21 occupational therapists.
The task selection covers 5 out of 6 basic activities of daily
living, with 15 task variations, for a total of 31,185 expert
demonstration data samples. The dataset, usage documenta-
tion, and the fine-tuned pose estimation model is publicly
available on our website [44]. In this section, we present the
characteristics and unique insights within the dataset that can
inform caregiving robot design.

A. Caregiver Demographics

We recruited 21 occupational therapists (OTs), including
19 final-year OT students and 2 licensed OT professionals.
The most experienced OT has over 40 years of clinical
experience. All participants are female, ages 22 to 75.
Collectively, they have experience working with populations
with neurological conditions, stroke, traumatic brain injury,
spinal cord injury, muscular dystrophy, and cerebral palsy.

B. Guiding Principles for Caregiving

Throughout data collection, we observe various principles
that OTs use to perform tasks efficiently and with minimal
physical effort. We collaborate with an experienced OT to
analyze our observations and distill underlying principles that
can guide robot design for caregiving tasks.

Principle 1 - Pre-positioning (P1): OTs prioritize safety
by carefully preparing the care recipient before initiating a
task. They ensure that the care recipient’s posture, stability,

joint angles, and supporting surfaces are appropriate for task
execution. For example, before rolling the care recipient to
the side, OTs align the trunk on the supporting surface to
prevent unexpected limb trapping or unintended shifts in
momentum due to weight redistribution.

Principle 2 - Anticipation (P2): OTs anticipate and posi-
tion their body mechanics to support the entire task sequence,
particularly for large-scale movements. They anticipate both
the final position and the trajectory of the care recipient’s
body and limbs, which influences task execution decisions.
For example, when rolling a care recipient on the bed, an
OT may position their hands on the opposite side of the
body before initiating the roll. Although this places the OT
at a biomechanical disadvantage initially, it provides better
control, allows for monitoring discomfort, and ensures the
care recipient is positioned well for the next step.

Principle 3 - Efficiency (P3): OTs prioritize accuracy
and timely completion of tasks to ensure efficiency. Care
recipients with severe mobility limitations often have medical
conditions, making efficient ADL execution crucial. Delays
can lead to bradyarrhythmias, hypotension, or dizziness,
while improperly placed garments may cause pressure ulcers.
For example, during transfers with a Hoyer sling, OTs
minimize the duration the care recipient is lifted to reduce
discomfort and physiological stress.

C. Illustrative Caregiving Techniques

We connect the principles to concrete techniques observed
in OpenRoboCare, illustrating how expert OTs ground these
high-level strategies in real caregiving scenarios.



Technique 1 - Bridge Strategy: bending the care re-
cipient’s knees and applying pressure behind the knees at
the top of the calf to momentarily elevate the pelvis, which
involves anticipating the motion (P2). This technique, often
used in bed toileting to position a bedpan, requires significant
caregiver effort and is most efficient when the care recipient
has a smaller body size than the caregiver (P3).

Technique 2 - Segmental Roll: gradually turning the
care recipient’s body. The OT bends the care recipient’s
opposite-side knee and applies pressure on the bent knee to
initiate a progressive rolling motion toward the OT (P1). The
pelvis moves first, followed by the upper body, shoulders,
and finally the head. This technique allows for slow and
controlled movement (P2), making it particularly useful for
bed bathing and toileting, especially for care recipients prone
to dizziness. Additionally, it benefits caregivers who are
significantly smaller than the care recipient, as it reduces
physical strain.

Technique 3 - Wheelchair Recline During Transfer:
reclining the wheelchair to a 45-degree backward tilt be-
fore transferring the care recipient improves positioning of
the care recipient on the chair, another example of pre-
positioning (P1). This action also minimizes the need for
post-transfer adjustments and reduces physiological stress,
aligning with the efficiency principle (P3).

Technique 4 - Stabilizing Key Points of Control: The
pelvic bone, shoulders, and head serve as the primary points
of control for body movement and are essential in all ADL
tasks. To facilitate movement, OTs place their hands on key
control points—such as the left or right scapula and pelvis—
to provide input to initiate, support, and control movement,
aligning with with pre-positioning and anticipation principle
(P1, P2). This strategy maximizes the ability of the therapist
to effectively and efficiently facilitate body movements, such
as bed rolling, for the care recipient (P3).

D. Insights from Task Execution

The dataset captures diverse task executions, offering
valuable insights for training robots in caregiving-specific
parameters, strategies, and workflow optimization.

Task Duration: We show the duration of each task in
Fig. 4d. Care recipient transfer from bed to wheelchair is
the most time-consuming task, followed by transfer from
wheelchair to bed, both taking significantly longer than
any other ADL. Transferring requires maneuvering multiple
assistive devices and manipulating deformable objects and
human limbs, making it a long-horizon task that can take up
to 9 minutes even for expert OTs.

Toileting Approach: OTs take two distinct approaches for
the toileting task (Fig. 4e): (1) rolling the manikin to the side
and inserting the bedpan under the body; and (2) bending
the knees and lifting the manikin’s hips to place the bedpan
underneath. OTs working with the heavier manikin chose the
first technique, as it requires less physical effort.

Manikin Lift Side Preference: Fig. 4f shows the lifting-
side preferences for on-bed tasks. We do not observe any
significant trend in side preferences. For dressing tasks, we
observe that OTs lift the manikin from both sides to prevent
the cloth from getting stuck underneath. All but one OT

was right-handed. We observe no correlation between hand
dominance and the preferred lifting side. In clinical practice,
OTs also follow the care recipient’s preferences for lifting in
addition to their own movement preferences. To make this
process efficient, OTs use specific biomechanical techniques
that do not require their maximal strength.

Dressing Approach: Fig. 4g shows the distribution be-
tween two observed dressing approaches: (1) head-first, and
(2) sleeve-first. Over 90% of OTs prefer to insert the sleeves
first when dressing the T-shirt or vest for both hospital bed
and wheelchair dressing tasks. Over 75% of OTs prefer to
undress the T-shirt head-first. Dressing requires precise limb
manipulation, making the sleeve-first approach preferable
for better control. In contrast, undressing involves fewer
constraints and does not demand precise limb guidance,
making head-first approach quicker and more intuitive.

E. Insights from Physical Interactions

The dataset provides empirical insights into how human
caregivers distribute force and interact with different body
regions across tasks.

Physical Contact: Different tasks require physical inter-
actions with different body regions (Fig. 4h). Lower-body
dressing requires significantly more contact with the shin and
thigh, whereas upper-body dressing requires more contact
with the forearm and upper arm. Transferring results in near
equal contact with body regions. Physical contact differs
within ADL variations, with notable differences between
transferring to a wheelchair versus a bed, dressing versus
undressing, lying versus sitting, and different clothing types
(Fig. 4i). Among all ADLs, bathing has the highest number
of physical contacts, while grooming has the least (Fig. 4j).

Force Magnitude: Additionally, the magnitude of force
exerted on the manikin varies significantly across tasks
(Fig. 4k). Transferring requires the highest force, as the
manikin must be completely lifted. In general, greater force
is applied to the limbs than to the torso, as the limbs act as
leverage points to turn the manikin and adjust its posture.
Force magnitude also varies across body regions over time
during a bathing task (Fig. 41). It peaks when the caregiver
bathes a specific area, while turning the manikin increases
force across all regions.

F. Guidelines for Robot Caregiving

We distill insights from occupational therapist demonstra-
tions to guide the development of caregiving robots. By
analyzing gaze information, we can determine the caregiver’s
area of interest, allowing robots to identify where to act.
Additionally, the caregiver’s gaze shift speed provides an
estimate of how fast the robot policy should be. Predictive
gazes occur when the caregiver looks at a different body
part before engaging in contact with it. Caregivers have
a pre-emptive timing of around 2.02 seconds. In terms of
robot policy planning, this delay indicates a possible look-
ahead timing to predict the next trajectory, while the robot
is still currently acting on its present task. Tactile sensing
indicates the range and distribution of force the robot should
apply. For example, gentle tasks such as bathing typically
involve light contacts around 0.1-2 N, while physically
demanding tasks such as repositioning or turning the body



can exceed 20-30 N. This wide range highlights the need
for robots to be capable of both delicate touch and high-
force interaction, requiring torque-sufficient, compliant, and
backdrivable actuators, along with force sensors that offer
high resolution and a broad dynamic range. Caregivers often
use whole-arm contact, such as bracing the body during a
roll, which differs significantly from typical robot manipu-
lation techniques like pick-and-place. To support these in-
teractions, robots should incorporate distributed sensing and
compliance along the entire arm, not just at the end-effector,
to enable safe and effective physical contact throughout
the task. Observing caregivers’ workspaces helps define a
reasonable range for designing caregiving robot hardware.
Since caregiving strategies may vary based on a caregiver’s
body shape, these strategies could also change depending
on the robot’s embodiment. Robots can learn to coordinate
multiple assistive devices by leveraging insights from human
caregiving interactions. See our website for details [44].

VI. EVALUATION AND OPEN CHALLENGES

We evaluate the state-of-the-art perception (Sec. VI-A)
and planning (Sec. VI-B) methods on OpenRoboCare, and
discuss the open challenges to address the question: What
is the performance gap in existing approaches for the robot
caregiving domain? We also highlight the potential for this
dataset to help advance robot vision and planning methods.

A. Perception: Human pose estimation

We evaluate SOTA pose detection methods on RGB im-
ages for tracking the manikin’s pose. For 2D pose estimation
(Table II), we use mAP5p 95, and for 3D pose estimation
(Table III), we use Mean Per Joint Position Error (MPJPE).

For 2D pose estimation, the off-the-shelf YOLOv11 [45]
performs poorly, but fine-tuning on even a small subset of our
labeled dataset leads to large gains, especially in occlusion-
heavy tasks like dressing and transfer. These results demon-
strate the potential of OpenRoboCare in advancing robust
pose perception for real-world caregiving.

Occlusion: Physical interactions in close proximity be-
tween caregivers and care recipients, along with the presence
of assistive devices, result in frequent heavy occlusion. This
makes pose estimation particularly challenging, due to partial
visibility of the body.

Distribution Shift for Real-world Caregiving: The care-
giving domain exhibits a substantial distribution shift com-
pared to general human pose datasets. It involves close phys-
ical interaction between two individuals, necessitating multi-
body pose estimation. Prior datasets [2] typically assume
simpler poses (e.g., standing) and fixed camera placements
that minimize occlusion. Additionally, caregiving involves
many unique postures that rarely occur in non-caregiving
ADL scenarios, further complicating pose estimation and
generalization. Finally, caregiving contains multimodal vari-
ability in task planning for multiple tasks, much of which
originates from OT expertise. These factors pose challenges
for existing models for robot-assisted caregiving. Our dataset
has the potential to bridge this gap.

TABLE 1II: 2D Pose Detection Performance (mAP5g_g5).

Method . .

(YOLOVI1 Variant) Bathing Dressing Transfer
Pretrained 0.0244 0.0259 0.0218
Fine-tuned (1 OT) 0.5711 0.7052 0.5964
Fine-tuned (5 OTs)  0.7757 0.8228 0.6648

TABLE III: 3D Pose Estimation Performance (MPJPE in mm)

Method RTMOPose3D [46] MixSTE [47] HoT [48] MHFormer [49]

119.9

MPJPE (mm) 122.9 142.2 162.7

B. Planning: Long-horizon task recognition

We run VidChapters-7M [37] on a subset of 21 videos.
Qualitative results are available on our website [44]. While
existing methods can recognize some subtasks, a significant
gap remains in the caregiving domain. The lack of training
data contributes to errors—for example, the model misidenti-
fies “positioning the Hoyer” as “positioning the foyer,” likely
due to unfamiliarity with caregiving terminology. The long
task horizons make it difficult for current models to recognize
full procedures. Finally, the diversity in task plans introduces
challenges in decomposing long-horizon task plans.

VII. DISCUSSION

In this work, we proposed OpenRoboCare, the first multi-
task, multimodal, expert-collected dataset for robot caregiv-
ing. While the dataset is already large, future work could
consider supplementing it with partial sensory data that is
easier to obtain. Another limitation of OpenRoboCare is
its focus on fully passive care recipients. Future work will
consider partially mobile individuals who actively participate
in ADLs. These efforts are crucial to advance learning-based
approaches, ultimately enabling more adaptable and capable

robot caregivers.
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